Buildings Cooling Heating and Power

Ronald Fiskum
Technical Manager
Office of Distributed Energy
US Department of Energy

Buildings Cooling Heating and Power

Partnerships

Integrated Energy Systems (IES)

Flexible Fuels: Natural Gas, Propane, Clean Oil & Renewable Hybrids

Baseline Laboratory and Field Testing and Packaged & Modular System Development

Thermally Activated Technologies (TAT)

Distributed Generation Technologies (DG)

Absorption Chillers & Heat Pumps, Desiccants, Heat Recovery Systems

Fuel Cell R&D and Engine, Microturbine and CT Integration

Strategic Approach

- Complete development of TAT hardware that can be effective in either direct-fired or waste heat utilization applications.
- Evaluate TAT equipment integrated with DG equipment.
- Develop "first generation" BCHP packaged and modular systems.
- Partner with industry, ESCOs, utilities, universities
 & state agencies.

Benefits to Utilities & ESCOs

Gas and Electric Utilities and Independent ESCOs can benefit from BCHP because:

- The increased financial leverage (ROI) provides more competitive offerings for utility/ECSO ownership and operation of building energy systems.
- BCHP is the only way to achieve the necessary improvements in systems reliability, durability and efficiency to provide competitive offerings in the future.
- BCHP is the only way to assure that building codes and other regulatory barriers are brought in line with the benefits BCHP building systems offer

Benefits to Manufacturers

- Manufacturers directly benefit from BCHP because:
 - Absorption chillers and desiccant dehumidification system manufacturers benefit from BCHP because the efficiency contribution of using their equipment is key to BCHP projects.
 - Fuel cell, microturbine, gas turbine and IC engine manufacturers need BCHP integrated system to increase customer ROI to secure more business.
 - Controls manufacturers are seeking differential advantage in competitive market and BCHP provides this.

Benefit to Owners

- Customers can benefit from BCHP because:
 - BCHP offers very low cost operation
 - BCHP often improves power reliability and power quality
 - BCHP provides a hedge against uncertain power pricing especially among poor load factor costumers like office buildings.

Benefits to Society

America can benefit from BCHP because:

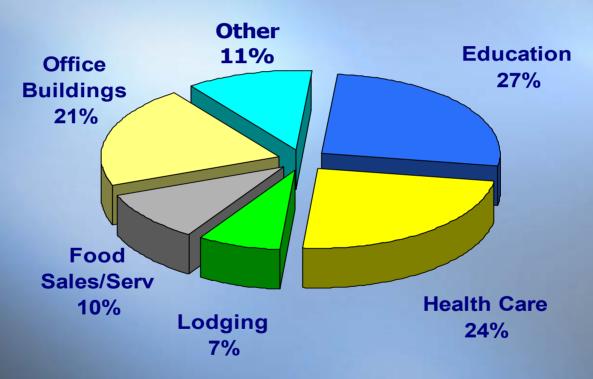
- 30% or better improvement in primary energy efficiency
- 45% or better reduction in CO2 Emissions
- Improved IAQ through the increased use of desiccant dehumidification
- Economic benefits through improved GRID reliability (I.e. reduced peak time blackouts)
- BCHP is a classic case where government catalyst is essential as individual companies could not succeed.

Strategic Approach

- Develop cost effective BCHP technologies
- Address regulatory, institutional, and market barriers.
- Demonstrate and verify the benefits of expanded use of BCHP
- Develop and validate analysis and design tool software.
- Document and widely disseminate results to stimulate market.
- Develop advanced, "next generation" BCHP systems.

Four Key Challenges

- Thermally Activated Technology
 - Absorption Cooling
 - Ventilation Air Conditioning Humidity Control
 - Heat Recovery Devices
 - Thermal Heating
- Onsite Power Technology
- Systems Integration
 - Controls Development
 - Building Load Integration
- Barrier Removal, Education and Technical Assistance



Market Focus and Potential

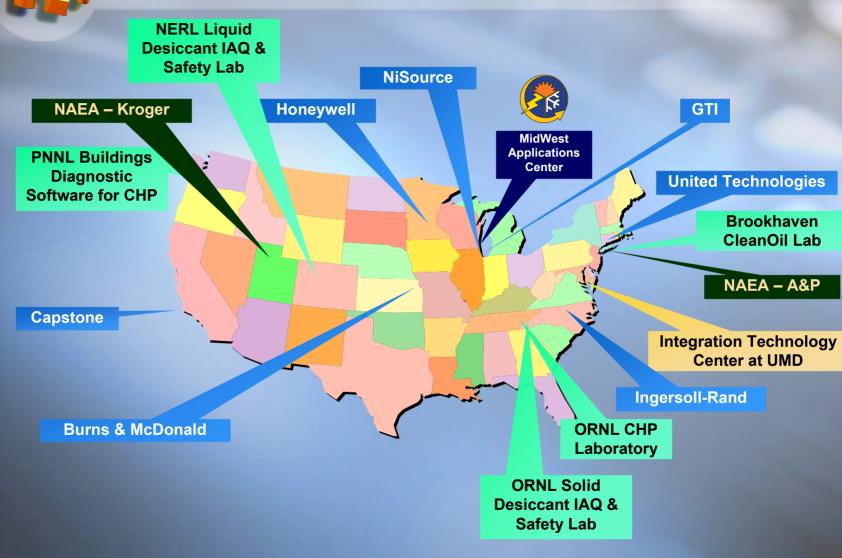
BCHP Potential: 75,000 MW

Source: U.S. DOE-EIA and Onsite-Sycom

Partnerships

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

- Industry led effort to develop Thermally Activated Technologies (TAT)
- Integrated DG and TAT
 equipment into Integrated
 Energy Systems (IES)
 Integrate IES into
 buildings, campus
 facilities and district
 energy plants



Partnerships - Diversified Portfolio

Thermally-Activated HVAC Technologies are Key to Improving Overall Efficiency of DG

Distributed Generation Technologies

Gas-turbine

Solid Oxide Fuel Cell

600°F

360°F

180°F

950°F

Micro-turbine

Phosphoric Acid Fuel Cell

I.C. Engine

PEM Fuel Cell

Triple-Effect Absorption

Thermally-Activated HVAC

Technologies

Double-Effect Absorption

Single-Effect Absorption

Desiccant Technology

Recoverable Energy Quality (Temperature) and HVAC Technology Match

Thermally Activated Technology

- Absorption Cooling
- Ventilation Air Conditioning Humidity Control
- Heat Recovery Devices
- Thermal Heating

Absorption Heat Pump/Chiller – Near Term

- Residential/Light Commercial Application
- Ammonia/Water Design
- 3 To 7 Ton Modules For Residential/Light Commercial Use
- Direct-fired Performance 0.7 COP Cooling & 1.4
 COP Heating Targets Met In Laboratory 2001
- Field Test Chiller 2002, HP 2003

3 RT Heat Pump

5 RT Product Concept

Absorption Chillers – Near Term

- Exhaust-fired absorption chiller integration in IES systems
- Co-fired double-effect chillers
- Triple-effect chillers

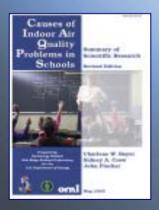
Exhaust Gas-Fired Single-Effect
Broad USA Chiller

Trane Single Effect Steam/Hot Water Chiller

York 450 RT Triple Effect Chiller Prototype

Desiccant Technologies - Near Term

- Industrial dehumidifiers
- Commercial cold footprint applications
- Commercial ventilation air systems for humidity control in humid climates
- Focus is on cost reduction breakthroughs and fundamental application knowledge



Desiccant Technologies - Near Term

Desiccant System Testing ORNL

Fundamental
Field Research in
Moisture
Management and
Desiccant System
Technology
ORNL

Desiccant Component Test Facility
NREL

Liquid Desiccant System Development NREL

Onsite Power Technologies

Integrate with Jacket and Exhaust Systems

Provide TAT Information to Design Teams

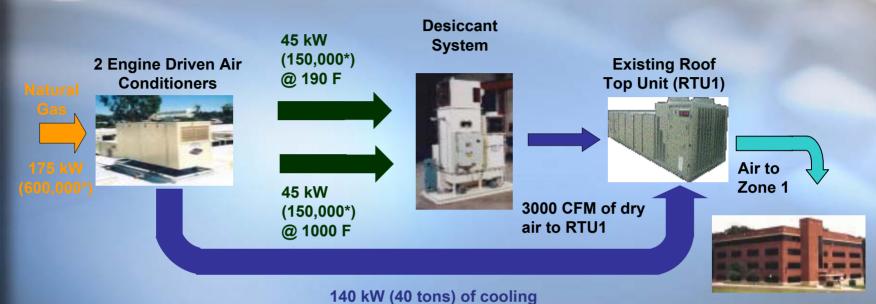
Develop Exhaust Gas Powered TAT

Develop Exhaust Gas Powered TAT

System Integration

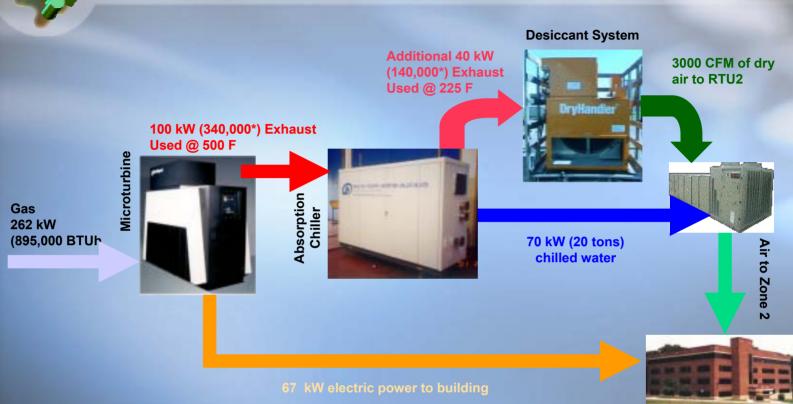
- Equipment Integration Research
- Building Integration Research
- Modular and Packaged System Development

Integration Test Center at UMD



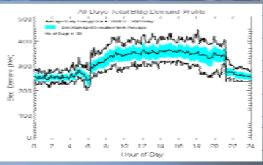
Integration Test Center at UMD

- Engine Jacket Water & Exhaust Used to Regenerate Desiccant
- Liquid desiccant only waste heat driven
- Overall Efficiency up to 80 %



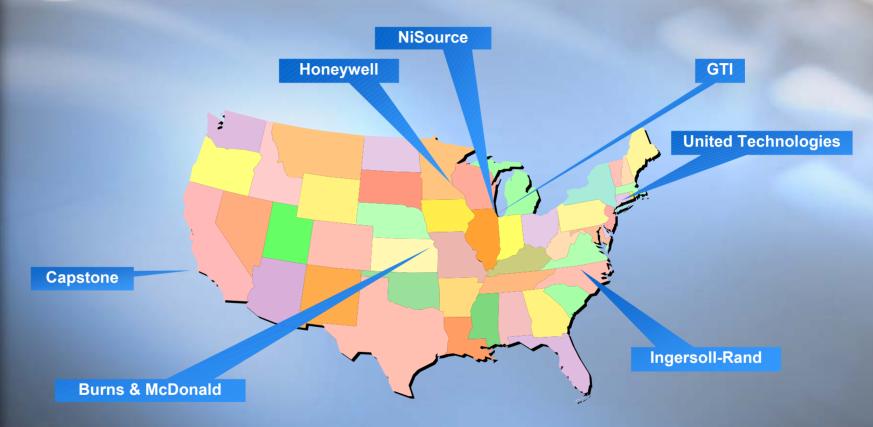
Integration Test Center at UMD

- Turbine efficiency 25.6 %, with chiller 63.5 %, and with desiccant 79.2%
- Single Effect Absorption Chiller with COP of 0.7
- Supplemental cooling provided by existing RTU



Building Integration Verification and Testing

- Seeking real world answers to improve tomorrow's energy solutions
- In Partnership:
 - Kroger
 - → AGA
 - → GTI
 - → DOE ORNL
 - Questar



Packaged and Modular IES Development

Ronald Fiskum